





检测对象:钢表面缺陷
主要方法:基于Faster R-CNN的带钢表面缺陷检测网络,字符缺陷检测,该网络的改进在于提出的多级特征融合网络( MFN )
将多个分层特征组合成一个特征 ,江苏字符检测,可以包括缺陷的更多位置细节。基于这些多级特征,采用区域提议网络
( RPN )生成感兴趣区域( ROI ) .在缺陷检测数据集NEU-DET.上,提出的方法在采用ResNet-50的
backbone"下实现了82.3%的mAP。

结合图1和图6所示,本发明的步骤s2包括:s21、利用层拍相机沿z轴方向对镜头内部进行层拍获得多张图片,并按照顺序等分为多组;s22、对每一组图片进行缺陷分割和识别,将符合缺陷标准的所有缺陷放入到缺陷容器中;s23、在缺陷容器中,通过比较缺陷中心距离偏差值将同一位置处的缺陷筛选出来;软件团队于业界有近15年的丰富视觉检测软件编写、设计等经验,自给自足。
字符缺陷检测-江苏字符检测-苏州宣雄智能由苏州宣雄智能科技有限公司提供。“缺陷检测,摄像头缺陷检测”选择苏州宣雄智能科技有限公司,公司位于:江苏省苏州市昆山市开发区前进东路科技广场1501室,多年来,宣雄坚持为客户提供好的服务,联系人:朱秀谨。欢迎广大新老客户来电,来函,亲临指导,洽谈业务。宣雄期待成为您的长期合作伙伴!