




本发明对于镜头上下表面的检测,通过镜片区域减去屏蔽区域获得有效检测区域,并将多张图片的有效检测区域进行融合,进行一次缺陷检测,摄像头缺陷检测,有效提升了检测结果的准确性。
具体实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,外观缺陷检测,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
目标定位是计算机视觉领域中基本的任务之一,同时它也是和传统意 义上缺陷检测接近的任务,其期的是获
得目标的位置和类别信息。目前, 基于深度学习的目标检测方法层出不穷,-般来说, 基于深度学习的缺陷
检测网络从结构.上可以划分为:以Faster R-CNN为代表的两阶段(two stage)网络和以SSD或YOLO为代表的一
阶段(one stage)网络。两者的主要差异在于两阶段网络需要首先生成可能包含缺陷的候选框(proal),然后在
进一步进行目标检测。-阶段网络直接利用网络中提取的特征来预测缺陷的位置和类别。

手机镜头是手机摄像模组的关键部件,缺陷检测,为保证手机镜头的成像质量,需要对其内外部进行各个角度、各种缺陷的检测。
对于手机镜头的缺陷检测,目前无法进行有效的检测。通常还是依赖于人工借助显微镜的方式进行检测,此检测方法存在以下缺点:
1、人工检测劳动强度大,效率低;
2、人工检测标准主要依靠感官判断,人员之间的标准差异大;
3、镜头的结构复杂,人工极容易出现漏检。

视觉缺陷检测-缺陷检测-苏州宣雄智能科技(查看)由苏州宣雄智能科技有限公司提供。苏州宣雄智能科技有限公司是从事“缺陷检测,摄像头缺陷检测”的企业,公司秉承“诚信经营,用心服务”的理念,为您提供更好的产品和服务。欢迎来电咨询!联系人:朱秀谨。