本发明对于镜头上下表面的检测,通过镜片区域减去屏蔽区域获得有效检测区域,并将多张图片的有效检测区域进行融合,隐形眼镜缺陷检测供应商,进行一次缺陷检测,隐形眼镜缺陷检测怎么样,有效提升了检测结果的准确性。
具体实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
检测对象:布匹缺陷
主要方法:作者使用一个多层的CNN网络对布匹缺陷数据集中的六类缺陷样本进行分类,分类结束之后,对于
每一类样本进行缺陷检测。具体做法是: 1.使用滑动窗口的方法在512*512的原图上进行采样,采样大小为
128*128 ; 2.对上部分每一类图像采样后的小图像块进行二 -分类(有缺陷和无缺陷)。下图为文章两次分类使
用的CNN网络,隐形眼镜缺陷检测,两次分类的区别在于: 1.全连接层的输入分别为6和2 ; 2输入的图像尺日
(对于纸张较厚、表面缺陷检测角度 要求较高的的纸张产品采用反射的检测原理),架设在生产线 上的线阵相机进行实时同步扫描,同时系统将相机采集到的纸病图像通过SIMV图像处理单元进行瑕疵分割处理。由于瑕疵图像的灰阶与正常产品的灰阶存在明显差异,从而使系统能够发现瑕疵,同时对瑕疵进行有效的判定、分类。苏州宣雄智能科技有限公司苏州宣雄智能科技有限公司
隐形眼镜缺陷检测价格-隐形眼镜缺陷检测-苏州宣雄智能科技由苏州宣雄智能科技有限公司提供。苏州宣雄智能科技有限公司位于江苏省苏州市昆山市开发区前进东路科技广场1501室。在市场经济的浪潮中拼博和发展,目前宣雄在检测仪中享有良好的声誉。宣雄取得全网商盟认证,标志着我们的服务和管理水平达到了一个新的高度。宣雄全体员工愿与各界有识之士共同发展,共创美好未来。